Pandas join смотреть последние обновления за сегодня на .
Pandas is very useful but sometimes it could be hard to understand the differences between some functions that work towards similar goals. In this video, let's see how merge, join and concat works and what their differences are. RESOURCES: 🏃♀️ Data Science Kick-starter mini-course: 🤍 🐼 Pandas cheat sheet: 🤍 📥 Streamlit template: 🤍 📝 NNs hyperparameters cheat sheet: 🤍 📙 Fundamentals of Deep Learning in 25 pages: 🤍 COURSES: 👩💻 Hands-on Data Science: Complete your first portfolio project: 🤍 🌎 Website - 🤍 🐥 Twitter - 🤍
In this video we go over how to combine DataFrames using merge, join, concat, and append. We also discuss the different join types and how to use them in pandas. It is explained how to stack DataFrames on top of one another and how to stich DataFrames together side-by-side. ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ $15 off Annual Dataquest subscription app.dataquest.io/referral-signup/qybqz3r8/ ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ Did you find this video helpful? Consider subscribing for weekly tips, tricks, and tutorials. 🤍 Join my Discord Server 🤍 Reference: The Real Python 🤍 0:00 Intro 1:09 Merge (side-by-side) 6:40 Join Types 8:15 Merge Errors 9:55 Join 10:43 Concat (Stack) 12:48 Append
How to apply joins using python pandas 1. Inner join 2. Left join 3. Right join 4. Outer join
“There should be one—and preferably only one—obvious way to do it,” — Zen of Python. I certainly wish that were the case with pandas. In reading the docs it feels like there are a thousand ways to do each operation. And it is hard to tell if they do the exact same thing or which one you should use. That's why I made An Opinionated Guide to pandas—to present you one consistent (and a bit opinionated) way of doing data science with pandas and cut out all the confusion and cruft. I'll talk about which methods I use, why I use them and most importantly tell you the stuff that I've never touched in my years of data science practice. If this sounds helpful to you then please watch and provide feedback in your comments. This series is beginner-friendly but aimed most directly at intermediate users. “Opinionated Guide–Combining DataFrames” GitHub repo: 🤍 Helpful links: pandas.DataFrame. merge(), concat(): 🤍 SQL joins: 🤍 Link to GitHub repo including environment setup for tutorials: 🤍 PEP 20 – The Zen of Python link: 🤍
Симулятор аналитика: 🤍 Join — одна из самых частых операций при работе с данными. На первый взгляд, всё довольно просто: думаю, каждый из вас видел объяснения Join через пересекающиеся круги. Однако на практике всё оказывается немного сложнее. Обсудим, почему такое объяснение не всегда работает и какие подводные камни ожидают аналитиков при работе с Join в Pandas. Учитесь Data Science с нами: 🤍s/
If you want to combine multiple datasets into a single pandas DataFrame, you'll need to use the "merge" function. In this video, you'll learn exactly what happens during a merge operation, as well as how to use the four different types of joins. By the end of the video, you'll be fully prepared to merge your own DataFrames! AGENDA: 0:00 Introduction 1:21 Selecting the correct function 3:36 Merging (joining) DataFrames 12:07 Handling common issues with merges 17:01 Comparing the four types of joins CODE FROM THIS VIDEO: 🤍 RELATED VIDEOS: Using the pandas index (Part 1): 🤍 Using the pandas index (Part 2): 🤍 WANT TO JOIN MY NEXT LIVE WEBCAST? Become a member ($5/month): 🤍 = WANT TO GET BETTER AT PANDAS? = 1) WATCH my pandas video series: 🤍 2) SUBSCRIBE for more videos: 🤍 3) ENROLL in my pandas course: 🤍 4) LET'S CONNECT! - Newsletter: 🤍 - Twitter: 🤍 - Facebook: 🤍 - LinkedIn: 🤍
CLIQUE AQUI PARA SABER MAIS SOBRE O CURSO COMPLETO PYTHON IMPRESSIONADOR: 🤍 PARA BAIXAR O MINICURSO GRATUITO DE ANÁLISE DE DADOS: 🤍 - ► Arquivos Utilizados no Vídeo: 🤍 ► Vídeo de Instalação do Jupyter: 🤍 - Caso prefira o vídeo em formato de texto: 🤍 - Fala Impressionadores! Nessa aula eu quero te mostrar como juntar tabelas no Python que acaba sendo uma dúvida de várias pessoas! Vou te mostrar técnicas para juntar tabelas no Python, para que você consiga juntar bases de dados no Python da forma correta! Para poder mesclar essas bases de dados nós vamos utilizar a biblioteca pandas, que é uma biblioteca para trabalhar com bases de dados. É a biblioteca mais utilizada para análise de dados e para trabalhar com dados (temos vídeo sobre ela aqui no canal). Vamos utilizar 2 métodos do pandas para poder juntar essas informações. Vamos utilizar o método concat e o método merge. - Hashtag Programação ► Inscreva-se em nosso canal: 🤍 ► Ative as notificações (clica no sininho)! ► Curta o nosso vídeo! - Redes Sociais ► Blog: 🤍 ► YouTube: 🤍 ► Instagram: 🤍 ► Facebook: 🤍 Aqui nos vídeos do canal da Hashtag Programação ensinamos diversas dicas de Python para que você consiga se desenvolver nessa linguagem de programação! - #python #hashtagprogramacao
In this video, learn How to Join and Append DataFrames | Pandas Tutorial. Find all the videos of the PANDAS Complete Tutorial for Beginners Course in this playlist: 🤍 💎 Get Access to Premium Videos and Live Streams: 🤍 WsCube Tech is a leading Web, Mobile App & Digital Marketing company, and institute in India. We help businesses of all sizes to build their online presence, grow their business, and reach new heights. 👉For Digital Marketing services (Brand Building, SEO, SMO, PPC, SEM, Content Writing), Web Development and App Development solutions, visit our website: 🤍 👉Want to learn new skills and improve existing ones with in-depth and practical sessions? Enroll in our advanced online courses now and make yourself job-ready: 🤍 All the courses are job-oriented, up-to-date with the latest algorithms and modules, fully practical, and provide you hands-on projects. 👉 Want to learn and acquire skills in English? Visit WsCube Tech English channel: 🤍 📞 For more info about the courses, call us: +91-7878985501, +91-9269698122 ✅ CONNECT WITH THE FOUNDER (Mr. Kushagra Bhatia) - 👉 Instagram - 🤍 👉 LinkedIn - 🤍 Connect with WsCube Tech on social media for the latest offers, promos, job vacancies, and much more: ► Subscribe: 🤍 ► Facebook: 🤍 ► Twitter: 🤍 ► Instagram: 🤍 ► LinkedIn : 🤍 ► Youtube: 🤍 ► Website: 🤍 | Thanks |- #PandasTutorials #PythonPandas #PandasFunctions
In this lecture you will learn about Joining and Merging Pandas DataFrames in elegant ways. In any real world data science and analysis situation with Python, you’ll need to merge or join Pandas Dataframes together to form your analysis dataset. Merging and joining dataframes is a core process that any aspiring data analyst will need to master and Pandas is its high-performance, in-memory join and merge operations. This lecture will cover following in greater details: 1.) Categories of Joining Pandas DataFrame 2.) Inner Join or Common Join 2.) Left Join | Left Outer Join 3.) Right Join | Right Outer Join 4.) Full Join | Outer Join 5.) Cross Join 6.) How to verify the records are coming from which dataset? 7.) What does indicator parameter in Pandas merger operations? 8.) How to set the suffixes to identify the dataset's columns 9.) How to apply joining operations based on index and primary key? 10.) How to joining multiple DataFrame using Pandas Merge? 11.) How to get all joins result from full join and why full join is useful in Pandas? 12.) How to verify the expected output from joining operations. RawData: 🤍 Jupyter File: 🤍 Python Teaser: 🤍 Python Pandas Tutorial: 🤍 Python Playlist: 🤍 Python Data Structure Playlist: 🤍 Python OOPs Playlist: 🤍 Python Excel Automation: 🤍
Pandas merge function provides functionality similar to database joins. You can merge two data frames using a column. One can perform left, right, outer or inner joins on these dataframes. This tutorial also covers indicator and suffixes flags in pandas.merge function. Topics that are covered in this Python Pandas Video: 0:00 Introduction 0:42 Merge two dataframes using merge() function 2:34 What is "Outer join" and "inner join" in dataset? 4:03 What is "left join" in dataset? 5:06 Use Indicator flag in join 5:42 How to use "suffixes()" argument in dataframes? notebook/code used in this tutorial: 🤍 To download csv and code for all tutorials: go to 🤍 click on a green button to clone or download the entire repository and then go to relevant folder to get access to that specific file. Do you want to learn technology from me? Check 🤍 for my affordable video courses. Next Video: Python Pandas Tutorial 10. Pivot table: 🤍 Popular Playlist: Complete python course: 🤍 Data science course: 🤍 Machine learning tutorials: 🤍 Pandas tutorials: 🤍 Git github tutorials: 🤍 Matplotlib course: 🤍 Data structures course: 🤍 Website: 🤍 Facebook: 🤍 Twitter: 🤍
Python Pandas Join Dataframes 2020. Pandas Join - Learn how to merge multiple data frames together using LEFT, INNER, FULL and CROSS join in Python. I will be providing the raw data & the code in case you want to try this yourself (best way of learning python). Support the channel on Patreon: 🤍 Data Analytics Course Link: 🤍 Tutorial Overview: Part 1: 1) Loading CSV Data into Pandas df 2) Left Join Part 2: 3) Inner Join 4) Full Join 5) Cross Join 6) Right Join - Why bother? 7) Union All / Concat Pandas tutorial link: 🤍 How to download and install Python through Anaconda: 🤍 Download Code and Raw Data: 🤍 Yiannis Pitsillides on Social Media: 🤍 🤍 🤍 🤍 Tags: python pandas data frame dataframe pandas join pandas merge join multiple pandas merge multiple data frames merge pandas rename column pandas cross join pandas outer join pandas inner join pandas outer join python set union pandas concat pandas left join python left join full outer join left join merge in python pandas fillna python fillna how to join dataframes in pandas how to merge data frames in pandas pandas dataframe Python Pandas Join Dataframes 2020 - Part 1 Python Pandas Join Dataframes 2020 Python Pandas Join Dataframes
Katharine Jarmul teaches you about joins using Pandas. More details about the course, as well as more free lessons, can be found at 🤍 This video teaches you how to use a join to join data frames to one another. You'll also review what joins do and the types of joins that are available. Follow 🤍strataconf for more data news: 🤍
How to join two DataFrames based on row indices in the Python programming language. More details: 🤍 Python code of this video: import pandas as pd # Load pandas library data1 = pd.DataFrame({"x1":["q", "w", "e", "r", "t"], # Create first pandas DataFrame "x2":range(15, 20)}, index = list("abcde")) print(data1) # Print first pandas DataFrame data2 = pd.DataFrame({"y1":range(10, 4, - 1), # Create second pandas DataFrame "y2":["xx", "bb", "x", "xxx", "bb", "b"], "y3":range(18, 1, - 3)}, index = list("cdefgh")) print(data2) # Print second pandas DataFrame data_merge1 = pd.merge(data1, # Inner join based on index data2, left_index = True, right_index = True) print(data_merge1) # Print merged DataFrame data_merge2 = pd.merge(data1, # Outer join based on index data2, left_index = True, right_index = True, how = "outer") print(data_merge2) # Print merged DataFrame Follow me on Social Media: Facebook – Statistics Globe Page: 🤍 Facebook – Group for Discussions & Questions: 🤍 LinkedIn – Statistics Globe Page: 🤍 LinkedIn – Group for Discussions & Questions: 🤍 Twitter: 🤍 Music by bensound.com
‘Pandas Join() Method in Hindi | Pandas Tutorial in Hindi | Machine Learning Tutorial’ Course name: “Machine Learning – Beginner to Professional Hands-on Python Course in Hindi” In this tutorial we explain Pandas Join Method in Hindi and describe these: 1) What is Pandas Join() Method 2) Parameters of Pandas Join Method 3) Pandas join other 4) Pandas join on 5) Pandas join how 6) Pandas join lsuffix 7) Pandas join rsuffix Python Pandas Tutorial Part-19 🤍 How to Create DataFrames With Different Ways: 🤍 Source Code & Short Notes: 🤍 Course Playlists- Python Pandas Tutorial in Hindi: 🤍 Python Matplotlib Tutorial in Hindi: 🤍 Python NumPy Tutorial in Hindi: 🤍 Introduction of Machine Learning: 🤍 Machine Learning Beginner to Professional Hands-on Python Course in Hindi: 🤍 For more information: Contact Us: - -Website: 🤍 -YouTube: 🤍 -Facebook: 🤍 -Instagram: 🤍 -Twitter: 🤍 -LinkedIn: 🤍 #PandasJoin()MethodinHindi #PandasTutorialinHindi #MachineLearningTutorialinHindi #IndianAIProduction #IAIP
Мы продолжаем углублять наши знания в Pandas, и в этом видео мы научимся использовать методы GroupBy, Join, Merge и Concat. Если вы новичок на Python, проверьте Python для начинающих: 🤍 Для получения простых советов на Python посетите мой Instagram: 🤍 #питондляdatascience #jupiterpython #питонбиблиотеки
This video is a part of python join series. It explains how to merge 2 dataframes on multiple ccolumns in pandas.
#cienciadedatos #datascience #datascientist #analytics #pythonprogramming #pythonforbeginners #programminglanguage En este video te explicaré como realizar la famosísima función BuscarV de excel con Python o bien el comando Left Join de SQL, también te daré algunos tips de limpieza para que las combinaciones sean precisas.
↓ Code Available Below! ↓ This video shows how to join pandas data frames using the merge function. Joining data that resides in different tables is a common data preparation task when creating an analytical data set from multiple sources. The merge function allows you to perform inner, outer, left and right joins by changing the how argument. If you find this video useful, like, share and subscribe to support the channel! ► Subscribe: 🤍 Code used in this Python Code Clip: import pandas as pd data1 = pd.DataFrame({"character": ["Goku","Vegeta", "Nappa","Gohan","Piccolo"], "power level": [12000, 16000, 4000, 1500, 3000], "uniform color": ["orange", "blue", "black", "orange", "purple"]}) data2 = pd.DataFrame({"character": ["Gohan","Goku", "Tien","Krillin","Yamcha"], "power level": [1500, 12000, 2000, 2000, 1500], "unif_color": ["purple", "orange", "green", "orange", "orange"]}) data1 data2 # Use df.merge() to join data frames data1.merge(data2, how = "outer", # join type on="character") # key column to join on # Join on multiple key columns data1.merge(data2, how = "outer", # join type on = ["character", "power level"]) # join on multiple cols # Join columns with different names # Rename columns so that they match data2.rename(columns={'unif_color':'uniform color'}, inplace=True) # Then join the data data1.merge(data2, how = "outer", on = ["character", "power level", "uniform color"]) * Note: YouTube does not allow greater than or less than symbols in the text description, so the code above will not be exactly the same as the code shown in the video! I will use Unicode large < and > symbols in place of the standard sized ones. . ⭐ Kite is a free AI-powered coding assistant that integrates with popular editors and IDEs to give you smart code completions and docs while you’re typing. It is a cool application of machine learning that can also help you code faster! Check it out here: 🤍
Merging two datasets using an Inner Join Documentation - Pandas Merge 🤍 Support us by becoming a Patreon 🤍
A self join is table joined with itself based on an identifier. In pandas, we can treat a dataframe as a table and perform a self join. ► Buy Me a Coffee? Your support is much appreciated! - ☕ Paypal: 🤍 ☕ Venmo: 🤍Jie-Jenn 💸 Join Robinhood with my link and we'll both get a free stock: 🤍 ► Support my channel so I can continue making free contents - 🌳 Becoming a Patreon supporter: 🤍 🛒 By shopping on Amazon → 🤍 📘 Facebook Page → 🤍 📘 More tutorial videos on my website → 🤍 ✉️ Business Inquiring: YouTube🤍LearnDataAnalysis.org #pandasTutorial #pandasPython #pythonDataFrame #pandasDataFrame
In this video we will discuss #Join Operation in Pandas ▶ Tutorial 7 : Pandas GroupBy Operation - 🤍 ▶Tutorial 6 : .Loc and .ILoc in Pandas -🤍 ▶Tutorial 5 : Different ways of Creating Data Frame - 🤍 ▶Tutorial 4 : How to Read Files Using Pandas ? -🤍 ▶Tutorial 3 : Pandas DataFrame || What is Data Frame ? - 🤍 ▶Tutorial 2 : Pandas Series - 🤍 ▶Tutorial 1 : Pandas Introduction-🤍 ▶ Python Playlist : 🤍 ▶Jupyter notebook tutorial -🤍 ▶Difference between AI vs ML vs DL vs DS-🤍 ▶Basic tools to know for Data Science-🤍 ⚡Channel Description⚡ Hi and Welcome to my channel. This channel focuses mainly on Data Science,any one from technical or non technical background who want to learn data science or to revise the concepts of python, maths,statistics, data science can follow the channel ........... Happy Learning ⭐Video Tags⭐ #PANDAS , #PYTHON BASICS,#PANDAS FOR BEGINEERS
Hiểu kỹ về JOIN để không bị rối não khi JOIN nha. 👉 Tất tần tật về SQL JOIN 🤍 👉 Chuỗi SQL Nâng Cao 🤍 Kết nối với Vịt: 👉 Facebook: 🤍 👉 Tiktok: 🤍 Mời Vịt 1 tách cà phê ☕☕ 💰 Momo: 🤍 💰 VPBank: 4444555667 (Che Duc) 💰 ACB: 13174397 Credits: 👉 Logo: Icons made by Freepik freepik.com from Flaticon flaticon.com 👉 Slides: The presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik 👉 Song: Ikson - Paradise (Vlog No Copyright Music) Music promoted by Vlog No Copyright Music. Video Link: 🤍 #VitLamData #SQLNangCao #Join #Data #Analytics
This Python Pandas tutorial shows how to combine or merge two columns of a DataFrame into one new column using string addition. This is especially useful for dates where you have separate columns for year and month or month and date. Code: 🤍 Twitter: 🤍 Subscribe: 🤍 RELATED VIDEOS ► Numpy Intro: 🤍 ► Numpy Intro Jupyter nb: 🤍 ► Pandas Intro: 🤍 ► Pandas Import Data: 🤍 ► Pandas Selecting & Filtering: 🤍 ► Pandas Time Series: 🤍 ► Pandas and MatPlotLib: 🤍 ► Matplotlib Intro: 🤍 #Python #Pandas
This video is a part of Python Join series. It explains about Self Join in Pandas dataframe.
In this tutorial, I will walk you through how to replace the Excel VlookUp in Python by using Pandas. The Excel VlookUp is one of the most often & useful formulas. However, on larger datasets, a VlookUp might slow down the Excel Workbook. Also, Python opens the door to entirely automate Excel processes including VlookUps. Get the Jupyter Notebook & Excel file from my GitHub repo: 🤍 ◼️◼️◼️◼️◼️◼️◼️◼️◼️◼️◼️◼️◼️◼️◼️◼️◼️ 𝗖𝗢𝗡𝗡𝗘𝗖𝗧 𝗪𝗜𝗧𝗛 𝗠𝗘: 🌎 Website: 🤍 📝 GitHub: 🤍 ⭐ Discord: 🤍 ▶️ Subscribe: 🤍 🎉 𝗙𝗥𝗘𝗘 𝗘𝘅𝗰𝗲𝗹 𝗔𝗱𝗱-𝗶𝗻 𝘁𝗼 𝗯𝗼𝗼𝘀𝘁 𝘆𝗼𝘂𝗿 𝗽𝗿𝗼𝗱𝘂𝗰𝘁𝗶𝘃𝗶𝘁𝘆 Get it here: 🤍 📚 𝗥𝗲𝘀𝗼𝘂𝗿𝗰𝗲𝘀 𝗳𝗼𝗿 𝗹𝗲𝗮𝗿𝗻𝗶𝗻𝗴 𝗩𝗕𝗔 & 𝗣𝘆𝘁𝗵𝗼𝗻 Check out my recommendations: 🤍 ☕ 𝗕𝘂𝘆 𝗺𝗲 𝗮 𝗰𝗼𝗳𝗳𝗲𝗲❓ If you want to support this channel, you can buy me a coffee here: 🤍
Aprenda como unir colunas e dados de um dataframes com a função JOIN do pandas, tendo uma aplicação de união similar ao PROCV do excel. Como unir dois dataframes? Como unir colunas de um dataframe? How to join columns of a dataframe. Códigos útilizados: df1.join(df2, rsuffix='_r', lsuffix='_l') df1.join(df2.set_index('col1'), on='col1’) How= 'left', 'right', 'inner' ou 'outer' #python #pandas #join #unir #dataframes #concat #merge #append 0:00 Introdução 0:20 Apresentando os dataframes 1:03 Função join 1:30 Parâmetros de sufixo 1:52 Unindo colunas fora do índice 2:40 Resolvendo erro do parâmetro 'on' 3:06 Parâmetro how (IMPORTANTE) 4:11 Encerramento
En este video te muestro paso a paso a realizar una de las mejores funciones de pandas, la función "merge" que consiste en relacionar dos dataframes utilizando alguna columna como punto de referencia. Recuerda seguirme en mis Redes Sociales Facebook Escuela de Bayes: 🤍 Instagram Escuela de Bayes: 🤍
Every week, we come up with a theme and compile the pandas' best moments in accordance to the themes! Check out the videos for some cute and fun! ■ CHECK OUT AND SUBSCRIBE TO OUR CHANNELS ■ iPanda(English): 🤍 iPanda熊貓頻道(Chinese): 🤍 ■ WATCH PANDA ON LIVE HERE ■ Panda on Live: 🤍 ■ MORE AWESOME PANDA SERIES ■ Panda & Nannies: 🤍 Baby Pandas In Kindergarten: 🤍 Panda Themed Party: 🤍 Panda Morning Call: 🤍 Panda Foodies: 🤍 Panda Countdown: 🤍 Panda Top 3: 🤍 ■ OUR OFFICIAL ACCOUNTS ■ Facebook: 🤍 Instagram: 🤍 Official Website(English):en.ipanda.com App (iOS): 🤍 App (Andriod):🤍
Python dosyası: 🤍
In this video we will understand how full outer join works with example
When using sql, we have join operation. In Python, pandas.DataFrame also provides the similar table operations. However, pandas.DataFrame has join, merge, and concat. What’s the difference among them? In this post, I will summarise the code and illustration of these operations. Concatenation: Concatenation basically glues together DataFrames. Keep in mind that dimensions should match along the axis you are concatenating on. You can use pd.concat and pass in a list of DataFrames to concatenate together. Merging: The merge function allows you to merge DataFrames together using a similar logic as merging SQL Tables together. Joining: Joining is a convenient method for combining the columns of two potentially differently-indexed DataFrames into a single result DataFrame.
In this tutorial, I will share a Python script to combine Excel files with help of pandas library. 📑 pandas.concat method: 🤍 ► Buy Me a Coffee? Your support is much appreciated! - ☕ Paypal: 🤍 ☕ Venmo: 🤍Jie-Jenn 💸 Join Robinhood with my link and we'll both get a free stock: 🤍 ► Support my channel so I can continue making free contents - 🌳 Becoming a Patreon supporter: 🤍 🛒 By shopping on Amazon → 🤍 📘 Facebook Page → 🤍 📘 More tutorial videos on my website → 🤍 ✉️ Business Inquiring: YouTube🤍LearnDataAnalysis.org #Pandas #PandasPython
This video is part of the Python Join Series. It explains Multi-Index merge/join on 2 dataframes (having different index column names in each respectively.)
Using pandas and python - How to do inner and outer merge, left join and right join, left index and right index, left on and right on merge, concatenation and append, merge dataframes with no columns in common, merge dataframes with duplicate column names, combine different pandas merge functions, ALL USING PANDAS AND PYTHON. Detailed blog post on how to do concat, join, and merge dataframes in pandas & python - 🤍 Free Data Science Resources - 🤍 Follow me on twitter - 🤍 My website - 🤍 Data Science Podcast - 🤍
How to Merge Data Sets in Pandas. Replicate SQL functionality using Python Pandas. A walk through on taking 2 data sets and using SQL style logic to combine 2 different datasets.
Merging two datasets using a Left Join Documentation - Pandas Merge 🤍 Support us by becoming a Patreon 🤍
Python Pandas Kütüphanesiyle Join ve Merge metotları
Here I briefly show you folks two ways to do and inner join in Python. 1.) Joining on a column with pandas merge. 2.) Joining on the index with pandas merge. Check out my personal website at 🤍MylesCooney.com